您现在的位置是:首页 > 医疗

浅谈高效超声系统工作原理

2022-09-10 02:05:06

在1990年代早期,尺寸与现代笔记本电脑接近的“便携式”电话(有时也称为“背包电话”)广为使用。此后,不出二十年,口袋大小的手机已经可以收发邮件和文字消息、拍照、查询股票、预约,当然还能给世界上任何地方的人打电话。与此类似,在医疗领域,早期所谓的“便携式”超声系统是推车式的,且在功耗较高、成本昂贵。幸运的是,超声系统近年来也得益于芯片集成和功耗调整技术的突破。

这些技术突破催生了更便携、更高效的超声系统,具有更佳的成像性能和更多的功能。更高的动态范围、更低的功耗以及更紧凑的系统级IC提供了高质量的图像,可更好地进行诊断。未来的超声系统可能是手持式的,并成为医师的第二个“听诊器”。

超声信号链

图1显示了一个超声系统信号链的简化框图。所有超声系统都在相对较长电缆的末端使用换能器,电缆长度一般为两米。此电缆至少包含8个——最多可达256个——微型同轴电缆,是系统中最昂贵的部件之一。在几乎所有系统中,换能器基元都直接驱动电缆。电缆电容成为换能器基元的负载,引起很大的信号衰减。它需要一个高度灵敏的接收器来保持动态范围和实现最佳系统性能。

浅谈高效超声系统工作原理

图1. 典型超声信号链

在发射端(Tx路径),波束成形器决定针对所需焦点而设定的脉冲序列延迟模式。然后,波束成形器的输出由高压发射放大器放大,以驱动换能器。这些放大器由数模转换器(DAC)或者高压FET开关阵列控制,将发射脉冲整形,以便更好地向换能器基元传输能量。在接收端,发射/接收(T/R)开关(通常是一个二极管电桥)阻挡高压Tx脉冲。某些阵列会使用高压(HV)多路复用器/解复用器来降低发射和接收硬件复杂度,但这样会牺牲灵活性。

时间增益控制(TGC)接收路径由低噪声放大器(LNA)、可变增益放大器(VGA)和模数转换器(ADC)构成。VGA通常提供线性dB增益控制,与超声信号反射衰减匹配。在操作人员的控制下,TGC路径用于在扫描过程中保持图像的均匀性。低噪声LNA对于尽可能降低随后的VGA噪声分配极为关键。在需要输入阻抗匹配应用中,有源阻抗控制使噪声性能最佳。

通过VGA将宽动态范围的输入信号压缩,以满足ADC的输入范围要求。LNA的折合到输入端的噪声限制了可分辨的最小输入信号,而折合到输出端的噪声主要取决于VGA,它限制了特定增益控制电压下可以处理的最大瞬时动态范围。该限制是根据量化本底噪声设定的,而量化本底噪声由ADC的分辨率决定。早期的超声系统基于10位ADC,但多数现代系统使用12或14位ADC。

抗混叠滤波器(AAF)限制了信号带宽,同时也抑制了ADC之前TGC路径中的无用噪声。

医用超声的波束成形是指信号的相位对准和求和,这些信号由共同的信号源生成,但是由多基元超声换能器在不同的时间点接收。在连续波多普勒(CWD)路径中,对接收器通道进行移相和求和,以提取相干信息。波束形成有两个功能: 一个是为换能器定向,以提高其增益,另一个是定义人体内的焦点,由该焦点得到回波的位置。

波束成形可以采用两种不同的方法实现:模拟波束成形(ABF)和数字波束成形(DBF)。ABF和DBF系统之间的主要区别在于完成波束成形的方式;这两种方法都需要良好的通道间匹配。ABF使用模拟延迟线和求和,仅需要一个精密高分辨率、高速ADC。DBF系统是目前最受欢迎的方法,它使用“很多”高速、高分辨率ADC。DBF系统中的信号应尽可能靠近换能器基元进行信号采样,然后将信号延迟并对其进行数字求和。DBF架构的简化框图如图2所示。

浅谈高效超声系统工作原理

图2. 数字波束成形(DBF)系统简化框图