您现在的位置是:首页 > 汽车

新型汽车设计需要降压-升压型转换器

2020-03-31 06:00:27

  随着汽车系统中电子组件数量的增多,可用空间持续压缩,这极大地增大了每个系统的密度。所有这些系统都需要电源转换 IC,通常这些 IC 有多种电压轨,以给每个子系统供电。传统上,线性稳压器满足了大部分这类电源转换需求,因为效率和小尺寸不是最重要的。但是随着功率密度提高了数个量级,加之很多应用需要在相对高的环境温度中运行,任何切实可行的散热系统都太大,没有足够的空间容纳。因此,电源转换效率变得至关重要了,这导致降压型开关稳压器取代了线性稳压器。不过,新出现的汽车设计需要开关稳压器提供恒定输出电压,而不管输入是否高于、低于或等于输出。新的电源 IC 无论输入电压摆幅多大,都能连续提供良好稳定的输出,这给电源管理 IC 造成了新的挑战。电源管理 IC 不仅必须提供坚固的设计,而且必须提供最高效率、最低静态电流和占板面积紧凑的解决方案。

  电子系统的瞬态挑战:停/启、冷车发动和负载突降情况

  为了最大限度地提高燃油里程,同时尽量降低碳排放,一些非传统型动力传动技术在不断发展。这些新技术无论是采用混合动力、清洁柴油发动机还是采用更传统内燃机设计,都有可能采用停-启电动机设计。在全世界所有混合动力设计中,几乎普遍采用了停-启电动机设计,很多欧洲和亚洲汽车制造商也将这类设计纳入了传统的汽油和柴油动力汽车中。美国福特公司不久前宣布,将在很多2012家用车型中采用停-启系统。

  停-启发动机的概念很简单,当车辆停驶时,关闭发动机,然后在车辆加速之前的瞬间,立即重新启动发动机。当汽车在车流中或因红灯停驶时,这可以减少燃油消耗和尾气排放。这种停-启设计可将油耗及尾气排放量降低 5% 至 10%。不过,这类设计面临的最大挑战是要让驾驶员察觉不到整个停-启过程。要想让驾驶员察觉不到停-启过程,需要消除两大设计障碍。第一个是,利用增强的启动器设计,实现快速重启,有些汽车制造商已经将重启时间降至不到 0.5 秒,从而使停-启过程真正察觉不到。第二个设计挑战是,当发动机关闭时,保持所有电子系统 (包括直接由电池供电的空调) 正常运行,同时保持足够的电力储备,以在加速时快速重启发动机。

  为了纳入停-启功能,动力传统系统的设计必须修改。也就是说,交流发电机也许还要兼作增强的电动机起动器,以确保快速重启。此外,必须增加停-启电子控制单元 (ECU),以控制发动机何时以及怎样启动和停止。当发动机 / 交流发电机关闭时,电池必须能给车辆的各种灯、环境控制以及其他电子系统供电。此外,当再次需要发动机工作时,电池必须能给启动器供电。这种极端的电池加载操作引入了另一个设计挑战,这一次是电气方面的挑战,重启发动机需要吸取很大的电流,这又可能将电池电压暂时拉低至 4V,与图 1 所示的电压曲线十分类似。这对电子系统的挑战在于,当电池总线电压短暂地低于所需输出电压,然后当充电器返回稳定状态,电池总线电压又返回标称的 13.8V 电压时,要提供良好稳定的 5V (或更高的) 电压。

  

未标题-1.jpg

 

  图 1:停-启和冷车发动时的瞬态电压

  “冷车发动” 是汽车发动机处于寒冷或冰冻温度一段时间后而起动的情况。这时机油变得十分粘稠,要求电动机起动器提供更大的扭矩,这回从电池吸取更大的电流。这种大电流负载在点火时,可能将电池 / 主总线电压拉低至 4.0V,之后,电池总线电压一般返回标称的 13.8V。汽车电源总线的电气表现看起来与图 1 所示停-启系统的情况非常类似,但是它们的原因却很不相同。至关重要的是,在发生冷车发动情况时,发动机控制、行车安全、导航系统等应用需要良好稳定的输出电压 (通常为 5V),以在车辆启动时连续运行。

  “负载突降” 是指当电池电缆断接同时交流发电机仍然给电池充电的情况。当电池电缆连接不牢固同时汽车在运行时,或当电池电缆断裂同时汽车在运行时,可能发生“负载突降”情况。这种电池电缆的突然意外断接可能产生高达 60V 的瞬态电压尖峰,因为交流发电机试图给不存在的电池满充电。交流发电机上的瞬态电压抑制器通常将总线电压箝位在 30V 到 34V 之间,并吸收大部分浪涌。不过,交流发电机下游的 DC/DC 转换器遭受了高达 36V 的瞬态电压尖峰。人们希望这些转换器不仅能承受这样的电压尖峰而不被损坏,而且在这种瞬态事件发生期间,还必须能连续调节输出电压。

  

未标题-1.jpg

 

  图 2:36V 负载突降情况下的电压瞬态