针对单节电池供电应用的电量监测技术
电源管理系统面对的最大难题是如何延长电池的运行时间。除了寻找能量密度更高的新式电源外,系统设计师也在寻找尽可能高效地利用电池电能的方法。他们大多将注意力集中在提高DC/DC转换效率上,由此延长电池运行时间,而往往忽略了与电源转换效率及电池容量同等重要的电池电量监测计精确度的问题。如果电池电量监测计的误差范围是±10%,则为了防止丢失关键数据,系统只能利用90%的电池电能。这相当于损失了10%的电池容量或电池运行时间。
无线接入账户管理、数据处理及医疗监控等许多移动应用对剩余电池容量测量精度的要求很高,以避免因电池耗尽造成突然关机。然而,保证在电池整个生命周期、过温状态或使用负载时的剩余电能的测量精度很困难,终端用户,甚至一些系统设计师都低估了这一点。主要原因是电池可用电能与其放电速度、工作温度、老化程度及自放电特性具有函数关系。开发一种算法来精确定义电池自放电特性及老化程度对电池容量的影响几乎是无法实现的。再者,传统的电池电量监测计要求对电池完全充电和完全放电以更新电池容量,这在现实应用中很少发生,因而造成了更大的测量误差。所以,在电池运行周期内很难精确预测电池剩余容量及工作时间。
本文将介绍如何利用最新的电池电量测量技术一一阻抗跟踪测量技术解决上述难题,文中还将列举单节锂离子电池组解决方案的简单设计案例。
现有电量测量技术存在的问题
锂离子电池容量的下降是电池运行时间缩短的主要原因,这种误解普遍存在。实际上,电池阻抗持续增加(而不是电池容量下降)是导致电池运行时间缩短、系统提前关机的关键因素。在电池充放电100个周期左右的时间内,电池容量仅下降5%,而电池的DC阻抗升高比例却达到一倍或两倍因子级别。老化电池阻抗提高的直接结果是负载电流引起的内部压降增大。结果,老化电池达到系统最小工作电压(或称为终止电压)的时间要远远早于新电池。
传统的电池电量测量技术主要是基于电压和库仑计数算法开发的,在测量性能方面局限性很明显。由于成本低且实现简单,基于电压的测量方法广泛用于手机等手持设备,但使用一段时间后电池阻抗会发生变化,影响该方法的测量精度。电池电压可由下式得出:
其中,Vocv为电池开路电压,RBAT为电池内部DC阻抗。从图1可以看出,老化电池的电压比新电池要低,会使系统关机时间提前。
>
相关文章文章排行 |