您现在的位置是:首页 > 电源

三相电源自然换相点检测方法的研究

2022-08-10 02:07:20

  换相点检测工作原理

   在使用三相交流电时,往往要利用三相交流电的自然换相点作为控制的参考点,所以需要对三相交流电的自然换相点进行检测,以保证用电设备的安全可靠运行,同时对三相交流电的频率、相序、缺相情况进行实时监测,并且在三相电源出现异常时,进行相应的告警并做出保护措施。三相电源在自然换相点处,两相电压相等,并且是电压反相的起始点,该设计正是利用这一特点实现对自然换相点的检测,如图1所示。

两相正弦电压波形

图1 两相正弦电压波形

  在一个周期内,u1和u2存在两个交点,即a,b两点。a点是u2>u1的起始点,b点是u1>u2的起始点,该设计对a点进行检测,通过电路变换,在每一个周期的a时刻产生相应的脉冲信号,并将该信号送至单片机的外部中断,单片机对中断进行处理和判断,从而检测到自然换相点,同时通过软件对三相电源的频率、相序以及是否缺相作出判断。

  硬件电路设计

  三相电源自然换相点的检测有很多方法,大多数是采用模拟电路,通过比较器对相与相之间的电压进行比较,但是这种方法的精度不高,会直接影响输出电压控制的精度;另外也有通过数字电路实现的,但是大多数电路存在器件较多,电路复杂,并占用较多单片机资源的缺点。

传统的数字型自然换相点检测电路原理图

图2 传统的数字型自然换相点检测电路原理图

  检测电路设

  设计了如下检测方法,克服了传统的检测方法存在的问题,如图3。

 三相交流电自然换相点检测原理图

图3 三相交流电自然换相点检测原理图

  当u 1 >u 2 时,稳压管两端电压为5V,电容C1充电,由于C1容值较小。而u 1>u 2 的时间为半个周期,即0.01s,足以保证电容C1充电完成,此时并联在三极管Q1基射极两端的的二极管提供钳位电压,使得三极管工作在截止区,光耦U1的控制二极管不导通,受控三极管截止,单片机外部INT0拉至高电平,当经过a点后,u 2>u 1 ,U2为三极管Q1提供基极电压,同时电容C1提供集射极电压,三极管Q1导通,在这段时间内,C1、控制二极管、R3、Q1形成回路,光耦U1中的受控三极管导通,单片机外部中断INT0下拉至低电平,在这个过程中,单片机对这个下降沿进行捕捉,实现对u1、u2两相交点a进行检测,光耦U1实现了输入端和输出端的电气隔离,同时提高了系统的抗干扰能力。

  以同样的方法设计另外两组检测电路,输入电压分别为u 1 和u 3 、u 2 和u 3 ,输出分别为INT1和INT2,完成对同一周期另外两个自然换相点的检测。

脉宽计算

  忽略三极管导通压降,由C1、发光二极管、R3组成的回路可以等效成一个RC电路的一阶零输入(图4)。

RC电路的一阶零输入响应

图4 RC电路的一阶零输入响应

  u0为稳压二极管VD的稳定电压,发光二极管的导通压降为VF ,t 0时电容储存的能量通过发光二极管和电阻释放出来,在这段时间内发光二极管发光,根据KVL可得:

  而,将其带入式(1)得:

  根据初始条件u C ( 0 + ) -V F =uC (0-)-VF =u0 -VF,并令式(2)的通解为uC -VF = Aem ,得该一阶齐次微分方程的解为:

  令乘积RC =τ,τ为RC电路的时间常数,反映了电容电压uC 的衰减速度,式(3)可写为:

  当uC 衰减到小于VF 的值时,二极管截止,

  解式(5)得即二极管导通时间为:秒。