一、功率因数控制电路和UC3854
⒈功率因数的定义
PFC即功率因数校正,功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值,即功率因数
?式中, 表示交流输入市电的基波电流有效值; 表示交流输入市电电流的有效值; 表示交流输入市电电流的波形畸变因数;cosφ表示交流输入市电的基波电压和基波电流的相移因数。所以功率因数(PF)可以定义为交流输入市电电流的波形畸变因数γ与相移因数cosφ的乘积。
可见功率因数PF由电流失真系数γ和基波电压、基波电流相移因数cosφ决定。cosφ低,表示用电电器设备的无功功率大,电能利用率低。γ值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,还会使用电设备损坏。
传统的功率因数概念是假定输入电流无谐波电流(即I1=Irms或γ=1)的条件下得到的,这样功率因数的定义就变成了PF=cosφ。
⒉功率因数校正实现方法
理想情况下,功率因数PF=cosφ×γ=1,但通常PF都小于1。功率因数校正的作用,就是使电路的功率因数PF达到或者接近于1。这可以通过两个途径达到:
⑴使输入电压、输入电流同相位。此时cosφ=1,所以PF=γ。
⑵使输入电流正弦化。即 = (谐波为零),有 / =1即;PF=cosφ×γ=1。
从而实现功率因数校正。利用功率因数校正技术可以使交流输入电流的波形完全跟踪交流输入电压波形,使输入电流波形呈纯正弦波,并且和输入电压同相位,此时整流器的负载可等效为纯电阻。
在实际电路中,往往把PFC电路设置在桥式整流输出至滤波电路之间。这时基准电压是m型半波波形,经PFC电路跟踪处理后的输入电流波形也是m型半波波形,但只要满足了输入电流的波形与输入电压(基准电压)的波形同频同相,就达到了功率因数校正的目的。
⒊PFC跟踪电流过程
图1所示为电流跟踪波形图。为了便于说明问题,图中电压Vin的波形与电流I的波形的纵轴采用了不同比例,以使它们能够重合。
⑴图1中若以电压Vin的波形为基准,则电流I的波形错开了一定距离,即产生了相位差。观察V、I波形图可以发现,只要将虚线J-K、L-M之间的电流波形的幅度依照电压波形适当提升,而将虚线K-L、M-N之间的电流波形的幅度依照电压波形适当压缩,即可使电流波形与电压波形重合。
根据同样原理,即便电流波形是方波等非正弦波,也可以整形为正弦波,并与电压波形重合。
实际上,在功率因数校正时,输入市电电压的波形和相位的采样是必需的,而可以不必对输入电流的波形进行采样,无论输入电流的波形如何,只要按照输入市电的波形和相位改造出所需的电流波形,就可以实现功率因数控制的目。所以在本书的实际电路中,通常并不对输入电流进行采样,使电路的设计更加灵活。