红外传感器定义
工程上把红外线占据在电磁波谱中的位置(波段)分为:近红外、中红外、远红外、极远红外四个波段。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。
红外传感器的测量基础原理
首先了解一下红外光。红外光是太阳光谱的一部分,红外光的更大特点就是具有光热效应,辐射热量,它是光谱中更大光热效应区。红外光一种不可见光,与所有电磁波一样,具有反射、折射、散射、干涉、吸收等性质。红外光在真空中的传播速度为300000Km/s。红外光在介质中传播会产生衰减,在金属中传播衰减很大,但红外辐射能透过大部分半导体和一些塑料,大部分液体对红外辐射吸收非常大。
不同的气体对其吸收程度各不相同,大气层对不同波长的红外光存在不同的吸收带。研究分析表明,对于波长为1~5μm、 8~14μm区域的红外光具有比较大的“透明度”。即这些波长的红外光能较好地穿透大气层。自然界中任何物体,只要其温度在绝对零度之上,都能产生红外光辐射。红外光的光热效应对不同的物体是各不相同的,热能强度也不一样。例如,黑体(能全部吸收投射到其表面的红外辐射的物体)、镜体(能全部反射红外辐射的物体)、透明体(能全部穿透红外辐射的物体)和灰体(能部分反射或吸收红外辐射的物体)将产生不同的光热效应。
严格来讲,自然界并不存在黑体、镜体和透明体,而绝大部分物体都属于灰体。上述这些特性就是把红外光辐射技术用于卫星遥感遥测、红外跟踪等军事和科学研究项目的重要理论依据。
红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱各种单色光的热效应从紫色光到红色光是逐渐增大的,而且更大的热效应出现在红外辐射的频率范围内,因此人们又将红外辐射称为热辐射或热射线。
红外传感器的发展趋势
1、智能化:目前的红外传感器主要结合外围设备来使用,而智能传感器内置微处理器,能够实现传感器与控制单元的双向通信,具有小型化、数字通信、维护简单等优点,能够单独作为一个模块独立工作。
2、微型化:传感器微型化一个必然趋势。现在应用中,由于红外传感器的体积问题,导致其使用程度远不如热电隅来的好。所以红外传感器微型化便携与否对其发展前途的影响是不可忽略的。
3、高灵敏度及高性能:在医学上,人体体温测试方面,红外传感器因测量的快速性而得到了相当的应用,但局限于其准确度不高而没办法取代现有的体温测量方法。因此,红外传感器高灵敏度及高性是其未来发展的必然趋势。
虽然现阶段的红外传感器还有很多的不足,但红外传感器已经在现代化的生产实践中发挥着它的巨大作用,随着探测设备和其他部分的技术的提高,红外传感器能够拥有更多的性能和更好的灵敏度,也将有更广阔的应用范围。