您现在的位置是:首页 > 传感器

先进投射电容式触控产品设计关键

2020-06-02 01:01:07

 

  电阻式触控屏幕在消费者设备中广被采用,主要是提供基本的触控按键切换功能或其它简单的虚拟用户接口元素(如滚动条控制)。这种技术可实现一种情景式用户接口方案,有助于缩小设备单元的尺寸和外部复杂性,并提供新的工业设计选择。不过,电阻式触控屏幕的光学性能较差,又存在可靠性问题,支持手势输入的能力相当有限,而且解释两个或更多个同时触控点的能力也很低,这些不足之处都限制了电阻式触控屏幕的使用,致使其迅速让位于电容式触控屏幕。

  过去几年间,电容式触控屏幕技术已迅速发展成熟(图1),它结合了在低成本硬件上运行的先进算法和精细的材料技术,创建出高度可靠且稳健的用户接口。

  图1 典型的触控屏幕系统

  

 

  但早期的电容式触控屏幕技术,以至目前市面上较低档产品的分辨率都很低,又存在液晶显示器(LCD)或其它噪声源的系统层面干扰问题,导致性能严重降低。

  投射电容式触控屏幕可以在目标(如手指)接近或接触到屏幕表面时检测到电容的细小变化。当一根手指或多根手指接触屏幕时,有多种方法对触控屏幕表面的电容变化进行测量和解释。电容-数字转换技术(CapaciTIve to Digital Conversion, CDC)与用于电荷收集的电极结构的空间排列(通常是显示屏幕表面的一层透明的感测薄膜),两者都对所达到的整体性能和简易设置能力有着重大的影响。

  提升电容触控可靠性 CDC/电荷转移技术缺一不可

  对于投射电容式触控屏幕的电容变化,有两种基本的排列和测量方法:自电容和互电容。互电容测量法具有按正交矩阵排列的发射和接收电极,这是电容式触控屏幕可靠地报告和跟踪多个并发触控点的唯一方式。为简单起见,可假设该技术由许多较小的触控屏幕组成,这些小触控屏幕又是通过电极结构的几何排列而形成,整个装置被视为一个完整的触控屏幕表面。只要能够识别每个“小”触控屏幕内的多个触控点,便可以实现此一功能。由于可独立测得矩阵中每个点的电容耦合,故完全能够确定多个触控点的位置坐标。

  以自电容为基础的触控屏幕却与之相反。自电容式方案是对整行或整列的电容变化进行测量(与互电容式方案中测量一行和一列的交叉点截然不同)。若用户压触两个地方,这种方法会导致位置不明确。虽然利用软件有可能对触碰位置进行某种程度的重建,但总是存在一定的模糊性,因而被解释的触控点会产生“鬼点”位置,继而导致无意的行为被报告给系统主机。该方案还存在一种有害的副作用,即当两个触控点共享同一行或同一列电极时,报告的坐标往往“固定”到有关电极,形成严重的非线性现象。在实践中,自电容式只用于单触控点或极有限的双触控点应用(图2)。

  图2 用于多点触控的自电容式(左)和互电容式(右)触控屏幕测量之比较

  

 

  在以互电容为基础的系统中,每个触控点都由一对(x,y)坐标来表示;而在自电容式系统中,触控点x和y坐标的检测是彼此独立的。在互电容式系统中,如果出现两个触控点,检测结果由(x1,y3)和(x2,y0)表示,但在自电容式系统中,是由(x1,x2,y0,y3)表示。因此在自电容式系统是无法确定(x1,y0)、(x2,y0)、(x1,y3)和(x2,y3)这些触控点中哪一个是正确的。

  CDC测量的基础方法也对电容式触控屏幕的工作方式造成重要的影响。有多种技术可用于信号撷取,例如弛张式振荡器(RelaxaTIon Oscillator)、CSA、Sigma Delta转换器等,并各有其优势和缺陷。从互电容式测量的角度来看,它们都有一个严重限制效用的主要缺点:在测量周期中,矩阵里芯片和互联之间的配线仍然对触碰(热点)很敏感。因为传感器的边缘配线会影响计算位置的信号,这种情形将导致测量中的位置错误,对测量极为不利。此外,它还会使从传感器到驱动器芯片的布线连接几乎只限于几厘米之内。上述问题中有些可以通过小心设计得到部分解决,但这也同时会对整体性能构成严重影响。

  以爱特梅尔(Atmel)的maXTouch为例,即采用电荷转移技术来进行CDC测量,能够在电荷撷取过程中有效地保持接收线路零电势,因此只须在主要传感器区域中目标点上的发射电极X和接收电极Y之间转移电荷。此外,还可把触控屏幕附近乃至触控屏幕表面上的局部湿气或其它潜在导电材料的影响降至最低。

  总括来说,以电极数组中互电容式测量为基础的触控屏幕解决方案不足以实现可靠的解决方案,而必须结合采用了电荷转移技术的稳健CDC,才是迄今最好的选择。